

Code R Base Technology Program

Pioneering Revolutionary Technology Overview

Presented to the Earth Science Enterprise Technology Strategy Planning Team

> Brantley R. Hanks November 28, 2001

Aerospace Technology

Strategic Program Area

Revolutionize **Aviation** (Blueprint)

Advance Space Transportation (ISTP)

Affordable

Pioneer Revolutionary **Technology**

Commercialize **Technology**

Objectives (Theme Areas)

Safety

Emissions

Noise

Mobility

Mission Reach

Safe

Ultra Efficiency

Self-Reliance

Science Measurement & Detection

Design for Safety

Programs

Safety

Capacity

Vehicle **Systems** Airspace **Systems**

2nd Gen **RLV**

Space Transfer & Launch Technology **Enabling Concepts and** Technologies (ECT)

Computing, Information and Communications Technology (CICT)

Engineering for Complex Systems (ECS)

Technology Development **Partnerships**

Commercial **Technology Program**

FY 00/01 to FY 03 Budget Re-Map

CETDP and Aerospace Base Elements

Breakthrough Sensors & Instruments

Distributed Spacecraft

Micro/Nano Sciencecraft

Ultra-lightweight Structures

Advanced Power & On-board Propulsion

Space Environmental Effects

Advanced Energy Systems

Thinking Space Systems

Atmospheric Systems & In-Space Ops

Surface Systems

High Rate Data Delivery

HPCC

IT Base

Bio-nano-technology (computing, electr., mat'ls, sensing)

Next Generation Infrastructure

ISE

PRT Strategic
Program Group
(\$276M in FY 03)

Enabling Concepts and Technology (ECT), \$93M*

Computing, Information & Communication Technology (CICT), \$155M

Engineering of Complex Systems (ECS), \$28M

- ECT, Tasks \$37.5M
- Breakthrough Sensors and Instrument Components (\$18.5M) JPL 31 tasks, \$15.9M; GSFC, 7 tasks, \$1.5; LaRC, 4 tasks, \$1.1M
 - Distributed Spacecraft (\$1.6M) JPL 3 tasks, \$1M; GSFC 3 tasks, \$0.6M
- Micro-Nano Sciencecraft (\$2.7M) JPL, 9 tasks \$1.9M; GSFC, 3 tasks, \$0.8M
- Ultralightweight Structures and Observatories (\$2.2M) JPL, 5 tasks \$1M; LaRC, 4 tasks, \$1M; GSFC, 1 task, \$0.2M
- Adv. Power and Electric Propulsion (\$12.5M) GRC, 22 tasks, \$12.3M; GSFC 1 task, \$0.2M
- CICT, Tasks \$14.8M
- Thinking Systems (\$10M) JPL, 7 tasks, \$1.1M: ARC, 20 tasks, \$8.4M; GSFC, 3 tasks, \$0.5M
- High-Data-Rate Delivery (\$3.5M) JPL, 8 tasks, \$1.5M; GRC, 6 tasks, \$2M; Atmospheric Systems and In-Space Operations JPL, 1 task, \$0.25M
- Surface Systems (\$1.3M) JPL, 5 tasks, \$1.3M

CETDP NRA – \$40M in FY 2002

\$120M Total FY 2001-FY 2003

Distribution by Center, \$M

Code Y Ratings of 112 Winning Proposals

Code Y Relevance Score	Number of Proposals	Total Value FY 01- FY 03
Excellent (91-100)	28	\$28.0M
Very Good (81-90)	10	\$12.6M
Good (71-80)	12	\$15.6M
Totals	50	\$56.2M

■ ARC ■ GRC ■ GSFC ■ JSC ■ LaRC ■ MSFC ■ JPL

Technology Investment Phasing

- ECT will follow through on technologies transition and insertion
 - Phase I Exploration: ideas, systems, and concepts
 - Phase II Transition: growing <u>user investment required</u>
 - Phase III Insertion: investment to assure measurement and evaluation
- Failure to progress through phases leads review for possible termination and rollover into new exploration phase
- Cost will reduce number of things that can be researched

Funding Allocation Strategy

- NASA Centers will not compete in Exploration Phase NRA's
- New NASA Exploration-Phase activities coordinated with advisory committees
- Transition Phase requires customer cofunding by bid and/or negotiation
- Successful Exploration Phase NRA partners participation varies, estimated 12.5 to 37.5 percent estimated depending on role

ECT Major Program Products Advanced System Concepts (\$12M)

FY 02 Mission Study Example: Earth Science

- Study of Revolutionary Earth Sciences Architecture for Atmospheric Chemistry, Earth Radiation Balance, and Geomagnetism Measurements
 - Dr. Shahid Habib, GSFC
 - A range of advanced platforms required for making Earth science measurements in the upper stratosphere will be investigated
 - The revolutionary technologies necessary for each platform needed to make the desired measurements will be identified

Subsystems Analyses (Preliminary)

Onboard-power and electric propulsion examples:

- -SBIRS
- -TRMM

Space Communications and Data Delivery – generic definition studies:

- Space network architectures
- Earth science systems

Avionics:

– Ultra-low power for EO-1

Instrument Components:

 General methodology and examples needed for integrated evaluation of components pay-off in systems

Bottom Line – Need to establish "what if" full **system** lifecycle assessment capability and baselines for space missions

* Includes broadly distributed \$40M Cross-Enterprise NRA)

Advanced System Concepts Project (\$12M)

- Conceptual studies and systems analysis of revolutionary aerospace system concepts

Energetics Project (\$21.6M) - Advanced power and propulsion technologies

Advanced Spacecraft and Science

Components Project (\$19.3M) - Advanced sensing and spacecraft systems technologies

Multi-Technology Integrated Systems

Project (future) - Technology products from
multiple projects integrated into proof-of-concept
systems

Revolutionary Space Flight (future) -Integrated Revolutionary Power and Propulsion Systems

ECT Funding, \$M

ECT Major Program Products

Advanced Spacecraft & Science Systems (\$19.3M)

High efficiency, low mass, tunable laser transmitters

High efficiency detectors and cryocoolers for focal plane assemblies

Micro-avionics and multifunctional structures to reduce spacecraft mass and launch volume by 3x

Relative position sensors and control algorithms for distributed spacecraft systems

Concepts for enabling 50+ meter class structures and apertures

Space environment models and analytical tools for predicting environmental effects on spacecraft systems

FY02 Joint Laser Technology Program Al

Distributed Spacecraft Systems Magnetospheric Technologies - \$2.2M **Multi-layer Mission HI-FI Integrated Simulation High-Altitude Relative** Visible Region n Primary Beam **Navigation** Code S Mission with Technologies Relevant to Code Y GPS Side Lobe **GSFC** Test-bed HSS Ground On-Board **GCTS Formation GCTS** CS CS ES **FFE** GTS (algorithm) **Flying** Science Instrument/ Payload Input NS NS (sensors) (estimator) **GUI** Input **Decentralized Control** External DISPLAY of Formations **Testbeds** and facilities

University NanoSats and Intersatellite Community

Developing and integrating technologies into system solutions that enable multi-spacecraft missions

ECT Major Program Products Energetics - \$21.6M

High efficiency space power systems to reduce mass by 50%

Advanced photovoltaics

Batteries & fuel cells

Flywheel energy storage

High efficiency onboard propulsion systems to propellant reduce mass by 50%

Pulsed plasma thrusters

Micro-ion thrusters

Hall thrusters

Revolutionary propulsion systems to reduce trip times for interplanetary missions by 30%

Advanced electric propulsion

Nuclear fission, nuclear fusion, antimatter propulsion

Solar sails

TRMM

- Launched Nov '97 on H-II (Japan)
 - 350 km Altitude, 35° Inclination
 - 3.5 year Mission Life
- Bus Power 1100 Watts
 - 3.4 kW GaAs Array
 - 670 Whr NiCd Batteries
- Hydrazine Propulsion
 - Orbit Maintenance (650 kg Fuel)
 - Controlled Re-entry (240 kg Fuel)

⁽¹⁾ The use of Hall thrusters for orbit maintenance requires coincident use of bus power for payload and propulsion; add'l array added for Hall system

SBIRS High (GEO)

GaAs/NiH2 NTO/MMH Insertion, SK, Repos.

3685 kg Launch Mass 6.5 kW Array (BOL) 10 Year Spacecraft Life 10x14 Day 90° Repositions

4J MBG/Li-Poly

Chem + Hall Insertion

5 kW Hall SK, Repos

1815 kg Launch Mass

6.2 kW Array (BOL)

15 Year Spacecraft Life

10x9 Day 90° Repositions

LV Class Reduction to Delta or 2 Sats per Atlas

GaAs/NiH2 NTO/MMH Insertion

3685 kg Launch Mass 6.5 kW Array (BOL) 15 Year Spacecraft Life 45x9 Day 90° Repositions

5 kW Hall SK, Repos.

Advanced Propulsion

450% More Repositions 35% Faster Repositions 5 Year Life Extension

Adv Power & Propulsion

\$200M Launch Savings 35% Reduced Trip Time 5 Year Life Extension

Potential Impact of RTULP Electronics - Example

NMP EO-1 As Designed Power

NMP EO-1 Mass After ULP

NMP EO-1 Power After ULP

ECT Issues – Developing a Process to Improve AT NASA's Long Term Technology Development

• FY 02 - A transient period:

- \$37.5M in remaining CETDP tasks to be completed in 02
- 2 years remaining on \$40M/year CETDP NRA
- Unbalances in critical/unique-to-NASA technology competencies
- Current portfolio poorly connected for transition to user

• FY 02 – Critical needs:

- Systems analyses of high priority future systems based on current SOA technologies to establish baseline capabilities
- Development approach that provides transition incentives to both developers and users

FY 03 – Updated technology foci:

- Systems driven (metrics approach is a challenge)
- Mission connected
- Bases for FY 03 NRA solicitation (FY 04 awards)

Computing Information and Communications Technology (CICT) Program - \$154.9M

Intelligent Systems Project (\$79.6M) - Smarter, more adaptive systems and tools that work collaboratively with humans

Computing and Communication
Systems Project (\$36.9M)) - Seamless
access to ground-, air- and space-based
distributed computing, information, and
knowledge

Space Communications Project (\$7.6M)

- Revolutionary space communications technologies

IT Strategic Research Project \$(30.7M)

- Broad portfolio of fundamental information and bio/nano technologies for infusion into NASA missions

Information Grid Systems Project (future)

Systems Autonomy Project (future)

CICT Funding, \$M

Earth Science Spacecraft Electronics

5 years ago

- 15 Mip, R3000 based processors on EO-1 and MAP use commercial development systems and commercial real-time operating systems (combining spacecraft functionality in single processor... i.e. C&DH and GNCC)
- Solid State Recorders single card holds many 5 to 10 gigabits... Landsat-7 140 gigabit SSR is about 4 cu ft
- Chip-On-Board technology to increase density / decrease cost
- Dedicated TAXI or RS-422 interfaces adequate for science data (1-10 mbps)

Today

- Increasing downlink capability with X-Band direct downlinks at 105+ megabits per second to a ground station (TDRSS costs have become very high)
- Science data moving at 800 megabits per second from the instrument into the data system for EO-1
 20 gigabits of RAM on a single card

5 to 10 years hence

- -Optical downlinks of 2 gigabits per second up and down... higher data throughput and ability to upload new algorithms
- -- On board storage requirements unchanged
- On board science computing requires 10's to 100's of gigaflops for science data processing and direct generation and downlink of products
- On board spacecraft processing requirements jumps to 100's of mips for autonomous ops and formation flying

Autonomous Sciencecraft Constellation Al

Tasks

- Detect surface-change events on 1st pass and autonomously reconfigure constellation for higher resolution observation on repeat pass.
- •Onboard science summarization & prioritization to maximize science return for fixed bandwidth.

Demonstrate intelligent downlink selection and autonomous retargeting on AF TechSat-21 mission

- Winning New Millennium Program ST6 phase A proposal validates intelligent systems technologies from the Space Base
 - Onboard data processing
 - Fast onboard planning & execution
- Enables observation of short-lived surface-change science opportunities
 - Earth: lava flow, floods, iceberg calving
 - Mars: dune motion, ice cap adv./retreat
 - Io: observe volcano eruptions
 - Europa: surface change from tidal stress

High Rate Communication Network Technologies for A | Earth Science Enterprise

22

DAS Optimization Effort - Futures

Now that we have achieved 200 d/d, DAO would like to push the Ames technology to the limit. The capability is sought is as follows:

Desires

- Simulate years of climate evolution
- Re-analyze decades of data
- Execute at 10x the resolution
- Execute with 10x the observations

Needs

- Another 10-100x in performance
- Larger compute systems

Engineering for Complex Systems (ECS) Program - \$28M in FY03

(Formerly "Design for Safety")

System Reasoning & Risk Management

<u>Project</u> (\$9M) - Better tools for life-cycle risk analysis, design robustness, failure modeling, and system trade-offs, addressing system complexity, design, and risk propagation profiles. Model Based Reasoning for growing analysis size and complexity.

Resilient Systems & Operations Project

(\$14M) – Replace rigid, non-adaptive systems by developing intelligent software technologies that provide robust and resilient operations as well as advanced diagnostic tools for evaluating and testing intelligent software systems.

Knowledge Engineering for Safe Systems

Project (\$5M) - Human and organizational risk factors, methods to capture and discover the effects of the human and organizational interactions, organizational and human knowledge capture for complex systems

Simulation Based Life Cycle Mgt (future) -

Enterprise Interactions

- Ratings of FY 01 tasks by Codes M, S, and Y used for FY 02 planning by ECT and CICT programs, March
- ARC CICT key personnel personnel participating on Code S IT Assessment Study Team, March-October
- Enterprise Technology leaders invited to Code R FY 03 Planning Meeting, July
- Draft program plans distributed to enterprises, October
- Discussions of issues with technologists Codes S and Y in telecons and meetings
- Video-cons with Enterprises to define mission-life-cycle relevance studies, review deliverables and plans targeted to begin in late-November to support program plan revisions due in late January